Extensions 1→N→G→Q→1 with N=C3 and Q=C32×Dic3

Direct product G=N×Q with N=C3 and Q=C32×Dic3
dρLabelID
Dic3×C33108Dic3xC3^3324,155

Semidirect products G=N:Q with N=C3 and Q=C32×Dic3
extensionφ:Q→Aut NdρLabelID
C3⋊(C32×Dic3) = C32×C3⋊Dic3φ: C32×Dic3/C32×C6C2 ⊆ Aut C336C3:(C3^2xDic3)324,156

Non-split extensions G=N.Q with N=C3 and Q=C32×Dic3
extensionφ:Q→Aut NdρLabelID
C3.1(C32×Dic3) = C32×Dic9φ: C32×Dic3/C32×C6C2 ⊆ Aut C3108C3.1(C3^2xDic3)324,90
C3.2(C32×Dic3) = C3×C32⋊C12φ: C32×Dic3/C32×C6C2 ⊆ Aut C3366C3.2(C3^2xDic3)324,92
C3.3(C32×Dic3) = C3×C9⋊C12φ: C32×Dic3/C32×C6C2 ⊆ Aut C3366C3.3(C3^2xDic3)324,94
C3.4(C32×Dic3) = Dic3×C3×C9central extension (φ=1)108C3.4(C3^2xDic3)324,91
C3.5(C32×Dic3) = Dic3×He3central stem extension (φ=1)366C3.5(C3^2xDic3)324,93
C3.6(C32×Dic3) = Dic3×3- 1+2central stem extension (φ=1)366C3.6(C3^2xDic3)324,95

׿
×
𝔽